If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2-6n=0
a = 15; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·15·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*15}=\frac{0}{30} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*15}=\frac{12}{30} =2/5 $
| 5-2x^2=6 | | (6+v)(4v-3)=0 | | 3y=6+(2+y) | | 2-x=8+5x | | 2-x=8+5x | | 3y=6+2+y) | | 15n^2-6n=0 | | 15n^2-6n=0 | | 15n^2-6n=0 | | (6+v)(4v-3)=0 | | 6^(x+1)=36 | | (6+v)(4v-3)=0 | | 2(1x+9)=20 | | 2(1x+9)=20 | | 3(1x+10)=30 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 6.5g+8=1.5g+18 | | 8m+14=m-14 | | 3(1x+10)=30 | | 8m+14=m-14 | | 8m+14=m-14 | | 8m+14=m-14 | | 3(1x+10)=30 | | 3(1x+10)=30 |